Erratum Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress

نویسندگان

  • Roberto Bravo
  • Jose Miguel Vicencio
  • Valentina Parra
  • Rodrigo Troncoso
  • Juan Pablo Munoz
  • Michael Bui
  • Clara Quiroga
  • Andrea E. Rodriguez
  • Hugo E. Verdejo
  • Jorge Ferreira
  • Myriam Iglewski
  • Mario Chiong
  • Thomas Simmen
  • Antonio Zorzano
  • Joseph A. Hill
  • Beverly A. Rothermel
  • Gyorgy Szabadkai
  • Sergio Lavandero
چکیده

Increased mitochondrial Ca2+ drives the adaptive metabolic boost observed during early phases of ER stress Increases in mitochondrial respiration and ATP production are often consequences of increases in mitochondrial Ca2+ (Green and Wang, 2010). In order to determine whether early phases of ER stress induced by tunicamycin increased mitochondrial Ca2+ , we treated cells expressing cytosolic or mitochondrial aequorins with histamine [which evokes Ins(1,4,5)P3-dependent Ca2+ release] and compared their mitochondrial Ca2+ uptake. We observed that histamine led to a mitochondrial Ca2+ uptake that was significantly higher in tunicamycinpretreated cells (P<0.05; 4 hours) than in untreated cells (Fig. 6A). Cytosolic Ca2+ increased similarly in tunicamycin-treated and untreated cells (Fig. 6B). These results indicate that the differences in mitochondrial Ca2+ levels are not due to altered Ca2+ release mediated by the Ins(1,4,5)P3 receptor but to an enhanced mitochondrial Ca2+ uptake, presumably due to the increased apposition of ER and mitochondrial Ca2+ channels. By using a different dye, Fura-2, we monitored the peak cytosolic Ca2+ levels after thapsigargin addition, reflecting the kinetics of Ca2+ release after sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibition. After 4 hours of tunicamycin treatment, the thapsigargin-induced Ca2+ peak was increased, and it was further elevated by inhibition of mitochondrial Ca2+ uptake using Ru360 (Fig. 6C). These results suggest that, besides the Ins(1,4,5)P3-receptor-mediated direct Ca2+ transfer from the ER to neighboring mitochondria, an additional phenomenon associated with the early phases of ER stress involves Ca2+ leak from the ER, also resulting in mitochondrial Ca2+ uptake. Indeed, no mitochondrial Ca2+ uptake following the thapsigargin-induced Ca2+ leak was observed in Mfn2knockout cells (Fig. 6D), which is reflected by the lack of effect of Ru360. This result further indicates that juxtaposition of mitochondria with the ER is necessary for the mitochondrial Ca2+ uptake evoked by Ca2+ leak during early phases of ER stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress.

Increasing evidence indicates that endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR), but that beyond a certain degree of ER damage, this response triggers apoptotic pathways. The general mechanisms of the UPR and its apoptotic pathways are well characterized. However, the metabolic events that occur during the adaptive phase of ER stress, before the cell ...

متن کامل

mTORC1 inhibitor rapamycin and ER stressor tunicamycin induce differential patterns of ER-mitochondria coupling

Efficient mitochondrial Ca2+ uptake takes place at contact points between the ER and mitochondria, and represents a key regulator of many cell functions. In a previous study with HeLa cells, we showed that ER-to-mitochondria Ca2+ transfer increases during the early phase of ER stress induced by tunicamycin as an adaptive response to stimulate mitochondrial bioenergetics. It remains unknown whet...

متن کامل

Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population.

Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their life...

متن کامل

Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita(+/Ins2)-derived β-cells.

Insulin release from pancreatic β-cells plays a critical role in blood glucose homeostasis, and β-cell dysfunction leads to the development of diabetes mellitus. In cases of monogenic type 1 diabetes mellitus (T1DM) that involve mutations in the insulin gene, we hypothesized that misfolding of insulin could result in endoplasmic reticulum (ER) stress, oxidant production, and mitochondrial damag...

متن کامل

Endoplasmic reticulum protein BI-1 regulates Ca²⁺-mediated bioenergetics to promote autophagy.

Autophagy is a lysosomal degradation pathway that converts macromolecules into substrates for energy production during nutrient-scarce conditions such as those encountered in tumor microenvironments. Constitutive mitochondrial uptake of endoplasmic reticulum (ER) Ca²⁺ mediated by inositol triphosphate receptors (IP₃Rs) maintains cellular bioenergetics, thus suppressing autophagy. We show that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011